Pre-Calculus Spring Final Exam Review 2016

Free Response Part

Time: $\mathbf{2}$ hours Date: May, 2016 Exam Ends at 10:00 am

AP Style Grading system: therefore show key details;

Name:

Make sure to get to school early so that you can start your test at 7:00 am, that way you will have more than two hours

Question 1

For the given function:

Create your own fourth power function

1.1 Plot the graph of $f(x)$ for the close interval [,] on the given grid paper.
1.2 For what interval is $\mathrm{f}(\mathrm{x})$ increasing on the open interval (,) ?
1.3 Using limits, determine: $\lim _{x \rightarrow k} f(x)$
1.4 Determine $\frac{d f(x)}{d x}$
1.5 Plot the graph of $f^{\prime}(x)$ for the close interval [,] on the given grid paper.
1.6 For which value of x does the $f(x)$ have a point of inflection on the open interval - $8<x<10$?
1.7 For what interval is $f(x)$ increasing and concave up on the open interval (,)?
1.8 What are the coordinates of the vertex (or vertices)

Total 20 Points

Question 2

Consider the function below:
$2 g(x)=$ quadraticfunction
2.1 Plot the graph of $g(x)$ on the closed interval \{2\}

Compute the area enclosed by the positive x -axis, $g(x)$, and $\mathrm{x}=7$, using the three methods below:
2.2 by partitioning [1,7] into five subintervals of equal length and choosing left end-point for each rectangular sub-interval.
2.3 by partitioning [1,7] into five subintervals of equal length and choosing Right end-point for each rectangular sub-interval.
2.4 by using integral notation (show work, use calculator only to check your answer)

Total 15 points

3 Question 3 No Calculator

$$
f(x)=[g(x)][h(x)]
$$

$$
\text { if } g(x)=e^{25 x^{4}-5 x} \quad \text { and } \quad h(x)=3 x^{5}-6 x^{3}-2 x
$$

3.1 Find $f^{\prime}(x)$, and leave answer in simplified form by pulling the common factor $\{7\}$
3.2 Evaluate $f^{\prime}(-5)$, and leave answer with " e "
\{3\}

Total 10 points

4 Question 4 No Calculator

Study page 949 : Problems 81, and Problems 8 to 12.
Page 947 solve problems 31 to 42
Page 947 Solve Problem 67 without using a calculator, Also find the point(s) of inflection if there is any.

Total 10 points

5 Question 5 (No calculator)

5.1 Write the partial fraction decomposition of:

Create your own fraction study page 789

Total 10 points

6 Question 6 (No Calculator)

$$
\begin{array}{ccc}
12 & -4 & -3
\end{array}
$$

6.1 For the determinant $A=15 \quad 13 \quad 10$ find the minor determinant M_{12} ? $\begin{array}{lll}2 & -6 & 4\end{array}$
\{5\}

Total 5 points

7 Question 7 (No Calculator)

Use the vectors below to answer question 7

$$
\mathbf{u}=-2 \mathbf{i}+13 \mathbf{j}+7 \mathbf{k} \quad \mathbf{v}=-5 \mathbf{i}-6 \mathbf{j}+2 \mathbf{k} \quad \mathbf{w}=3 \mathbf{i}-7 \mathbf{j}-8 \mathbf{k}
$$

Evaluate each expression:

7.1 U X W

$7.2 \mathbf{W} \cdot(\mathbf{u} \times \mathbf{v})$

Total 10 points

8 Question 8 (No Calculator)

8.1 Transform the equation $5 x y=12$ from rectangular coordinates to polar coordinates. Simplify your answer using double angles and leave answer in sine function.
8.2 Plot the point P with polar coordinates $\left(-3, \frac{5 \pi}{6}\right)$ and find other polar coordinate (r, θ) for the same point P for which $r>0$, and $0 \leq \theta \leq 2 \pi$.

Total 10 points

9 Question 9 (No Calculator)

9.1 Study POW and HOW 32 to 35
9.2 For what value(s) of x is the $f(x)=x^{6}-8 x^{5}+12$ equal to 12 .

Total 10 points

10 Question 10 (No Calculator)

10.1 Study POW and HOW 32 to 35
10.2 Study POW and HOW 32 to 35

Total 10 points

Total TEST Points $=\mathbf{1 1 0}$

Grid Paper
Question:1.1 Name:

Grid Paper
Question: 1.5 Name:

Grid Paper
Question: 2.1 Name:

Grid Paper

Question: 8.2 Name: \qquad

Trigonometry Law of Sines $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$ Law of Cosines $\begin{aligned} & a^{2}=b^{2}+c^{2}-2 b c \cos A \\ & b^{2}=a^{2}+c^{2}-2 a c \cos B \\ & c^{2}=a^{2}+b^{2}-2 a b \cos C \end{aligned}$	$\begin{aligned} & \text { Double - Angle Formulas } \\ & \begin{aligned} & \sin (2 \theta)=2 \sin \theta \cos \theta \\ & \begin{aligned} \cos (2 \theta) & =\cos ^{2} \theta-\sin ^{2} \theta \\ & =1-2 \sin ^{2} \theta \\ & =2 \cos ^{2} \theta-1 \end{aligned} \\ & \begin{aligned} \tan (2 \theta) & =\frac{2 \tan \theta}{1-\tan ^{2} \theta} \end{aligned} \\ & \text { Sum and Differences } \\ & \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\ & \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \end{aligned} \\ & \tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \end{aligned}$	Half-Angle Formulas $\begin{aligned} \sin \frac{\theta}{2} & = \pm \sqrt{\frac{1-\cos \theta}{2}} \\ \cos \frac{\theta}{2} & = \pm \sqrt{\frac{1+\cos \theta}{2}} \\ \tan \frac{\theta}{2} & = \pm \sqrt{\frac{1-\cos \theta}{1+\cos \theta}} \\ & =\frac{1-\cos \theta}{\sin \theta} \\ & =\frac{\sin \theta}{1+\cos \theta} \end{aligned}$ Pythagorean Identity $\sin ^{2} \theta+\cos ^{2} \theta=1$

DERIVATIVE DEFINITION

$\frac{d}{d x}(f(x))=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

PRODUCT RULE

$$
(f(x) g(x))^{\prime}=f(x)^{\prime} g(x)+f(x) g(x)^{\prime}
$$

POWER RULE

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

CHAIN RULE AND OTHER EXAMPLES

$\frac{d}{d x}\left([f(x)]^{n}\right)=n[f(x)]^{n-1} f^{\prime}(x)$
$\frac{d}{d x}\left(e^{f(x)}\right)=f^{\prime}(x) e^{f(x)}$
$\frac{d}{d x}(\ln [f(x)])=\frac{f^{\prime}(x)}{f(x)}$

DEFINITE INTEGRAL DEFINITION

$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x$
where $\Delta x=\frac{b-a}{n}$ and $x_{k}=a+k \Delta x$

FUNDAMENTAL THEOREM OF CALCULUS

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

where f is continuous on $[a, b]$ and $F^{\prime}=f$

COMMON INTEGRALS

$$
\int k d x=k x+C
$$

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C, n \neq-1
$$

$$
\int x^{-1} d x=\int \frac{1}{x} d x=\ln |x|+C
$$

$$
\int \frac{1}{a x+b} d x=\frac{1}{a} \ln |a x+b|+C
$$

Pre-Calculus Spring Final Exam 2015

Free Response Part

Student Points Distribution: each point is worth 1\%.

Name: \qquad Pd: \qquad

Question	Possible points	Points earned
1	20	
2	15	
3	10	
4	10	
5	10	
6	5	
7	10	
8	10	
9	10	
10	10	
Total	110	

